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(2.28) 

vanishes at infinity. Its boundary values G “+ (t) wil! represent the Fourier transform of 
the desired function v’ (t) 

! O” 
v’ (t) = 2Jc 

s 
Co+(z) e-itt dz (2.19) 

-co 

The preceding expression determines according to Eqs. (1.14) a piecewise holomor- 
phic function cp (z) which satisfies all requirements of the problem. 

The author is very grateful to G. A. Dzhanashiia and R. D. Bantsuri for useful discussions 
of the content of this section. 

The problem of internal semi-infinite stringer in an unbounded plate is solved in an 
analogous manner [3, 41. 
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The problem of the development of cavities in viscous bodies under infinite deforma- 
tions is considered. A formation of the problem of the development of a cavity under 
the conditions of a stationary slow flow of a viscous Newtonian fluid is given in Sect. 1. 
An exact solution of the problem of broadening of the cavity from the initial viscous 
one is obtained in Sect. 2. The analysis is limited to the case of the plane problem. 

1. Vi~cour body. Let us consider a viscous body subjected to Newton’s law and 
occupying an infinite domain in the exterior of some contour-L.(the problem is considered 
a plane one). The interior of the contour L is some cavity whose shape is known only at 



530 G. P. Chereprnov 

the initial instant of load application. The following are assumed:(a) The cavity walls 
are subjected to a constant pressure p (t); (b) there is a homogeneous state of stress 
or = o: (t), cy= cry” (t), hl/ = 0 (t is time) at infinity ; (c) the contour of the cavity 
at any time has two axes of symmetry which coincide with the axes of the fixed Carte- 
sian coordinate system ; (d) the flow is slow and quasi-stationary so that inertial terms 
can be discarded in the Navier-Stokes equations. For simplicity we limit ourselves to 
the case of an incompressible body ; however, this assumption is not essential to the 
subsequent exposition. 

The sness tensor components a,, cv, zrt, and the velocity vector components u, v 
in the zy coordinate system can be represented in the case under consideration by using 

formulas analogous to the Koslov-Muskhelishvili relations in the plane elasticity theory 
problem ox + cy = 4 Re (I, (z, t) (z= s+ iy) 

crl - 0, + 2ir,, = 2W’ (2, t) + Y (2, t)l (I.11 
& (u + iz,) = Y (2, t) - Z(P)) - $ (z, t) (Q = cp’, Y = $‘) 

Here 2p is the shear viscosity coefficient, Y (z, t) and I/J (z, t) are single-valued 
analytic functions of z in the domain occupied by the body ; the prime above the letter 
denotes the derivative with respect to the appropriate comples variable. 

The kinematic compatibility condition 

$+U~++o (1.2) 

(F (2, y, 0) is a given function) 

should be satisfied on the unknown boundary of the cavity whose equation has the form 
F (z, y, t) = 0. 

Moreover, the condition 

cp (z, t) + Zcp’(z, + w (z, t) = --P (t)z 
should be satisfied on the contour L . 

(z E L) (1.3) 

At the infinitely distant point the functions Y (2, t) and 9 (z, t) behave thus as z--t so: 

t) = ‘/P[cX3coo (t) + oyo3 (t)lz + 0 (z-7 
;(‘;’ t) = l/,[cQ~ 

(1.4) 
(t) - 0,” (t)lz + 0 (z-1) 

Therefore, the formulated problem reduces to the boundary value problem (1.2)-( 1.4). 
Let us go over to the exterior of a unit circle in the parametric t plane by using the 

mapping z = o (f;, t); the analytic function o (5, t) maps the domain I 5 1 > 1 conform- 
ally on the exterior of the contour L with a mutually one-to-one correspondence between 
the infinitely distant points, as well as the corresponding positions of the real and ima- 

ginary axes* Therefore w (5, t) = c (t)< + 0 (5-r) as 5-m (1.5) 

where c (t) is a real function. 
The boundary conditions (1.3),(1.4) on the 5 plane are hence written as follows : 

(P*(L q + o 
- ~ 

0’(5) cp,’ (5. t) -I- ‘II* K-9 4 = - P(t) 0 (67 t) as \51=1 

6.I (5. 0) = ao(5) as t=O (1.6) 

‘p* (5 * t) = ‘/o c(t) [4,03 (t) f ol, O3 @)I 5 + 0 (P) as 5-00 

Here 
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where o0 (5) is a given function. 

The functions cp. (b, t), 9. (6, t) and o (6, t) are to be determined. 
It is convenient to write the kinematic compatibility condition in the form 

as ;<\=I (2.8) 

Condition (1.8) is obtained from the following considerations (Fig. 1). Two velocities : 
(a) the velocity of a material point at the point 0 at the time r , whose,complex vector 

* 

(u + iv) is determined by (1.1). and (b) the kinematic velocity 
of displacement of the point 0 of the contour itself L (do / dtj 

nz corresponding to the same value of the parameter 5 giving the 

0 
us iL position of the point 0 on the curve L at any time, correspond 

&J 
to every point’0 of the contour L at time t . As follows from 

dt Fig. 1 on which two infinitely close positions of the contour L 

are compared in the neighborhood of a point 0 at times t and 
t 

t et t + dt, projections of the two mentioned velocity vectors on 

Fig. 1 
the normal n, to the contour L at point 0 should be equal. Now, 
to prove (1.8). there just remains to find an expression for the 

complex vector of the unit normal n, on L 

ds 
*z = p-j = , ,“: I:; :; , , ;;, = 6 , ;: ;:; :; , 

and to form the scalar product, a, of the complex vector a = 1 a 1 exp (&) and n, = 
= exp (ias) 

an = 1 a 1 cos(al - a,) = Re(an’,) 

Formulas (1. 5)-(1.8) complete the formulation of the boundary value problem in 
the b plane 

2. Elliptic&l cavity. Let us consider a class of solutions of the boundary value 
problem (1.5)-(1.8) in which the condition 

representing the vector equality of the kinematic and material particle velocities at the 
boundary of the cavity, is satisfied. Condition (1.8) is hence satisfied identically. 

Combining (2.1) and (1.6), we obtain 

aa 
-p(t) o(G. t) +211 at &22cp* (I;? t) as 151=i (2.2) 

By virtue of the principle of analytic continuation, (2.2) should also be satisfied in the 
total 5 plane 

Substituting (2.3) into (2.1) or into (1.6) and manipulating, we find 

= - f lE* (6, t) w’ (6, t) as ICI=1 (2.4) 

or 

P $ 10 (5, t) 0’ (5, t)l = - 9* (5, t) d(L t) as 15 ( = 1 (2.5) 
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Let us introduce an auxiliary analytic function 1 (5, t) 

(2.6) 

The function I’0 (6) is negligible and can be considered zero. By using the function 
r (5, t) the boundary condition (2.5) can be written thus: 

liw (t, tf = r (s, q as I 5 1 = i (2.7) 

A solution of the boundary value problem (2.7) in the class of functions which have a 
given order d (5) at infinity and satisfy the symmetry conditions will be the following: 

!J (8) 
0 (5, t) = c (1) 5 + 7 , I- (5, $I= p b (Q 6 + y (2.8) 

The real functions c (t) and b (t) should satisfy conditions (1.6) at infinity for the 
functions rp (5, t) and 9 (5, d); by using (2.6),(2.8) and (2.3) we find the following sys- 
tem of first order differential equations in f for c (t) and b (t) from (1.6) : 

d 
21.1 dt [c (0 b (Ql + [GrP” PI - axm @)I [c (012 = 0 (2.9 

de 
4pdt - IQ PI -I- czy @I + Qgrn (‘11 c (tf = 0 

where c (t) = c,,, b (t) = b, at t = 0, and b, and co are given constants governing the 
shape of the cavity at the initial instant of the loading; according to (28) this latter is 
the ellipse 

(2.19) 

The solution of the differential equations (2.9) which satisfies the initial conditions, 
is written as 

~(~)=~~~~~i~~(~)d~~ 

0 

b (1) = {h - co 5 T (t) exp b i L (zr) dtl] dr} erp [-- C L (T) dl] (2.11) 

where 
0 0 ;; 

By utilizing (2.8),(2.6) and (2.3), we obtain the desired functions ‘P* (P, t) and & (f, t) 
in the following form: “@f 

c (f) j - 

(2 12) 

where 

Jl fQ = PY (1) lc (412, B (t) = Z@Q ft)Ib2 (4 + cz (@I + b WC (01’ (t)l 

Formulas (2.8),(2.11),(2.E?) yield the exact solution of the problem of the develop- 
ment of a cavity from an initially elliptical one ; the exact formulas taking account of 

material compressibility and asymmetry of the problem are easily obtained by a com- 
pletely analogous method. 

Let us recall that the corresponding linear problem has been solved by G. V. Kolo$ov 

and Inglis for various particular cases, and by N. I. Muskhelishvili, in general form. 
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As is seen, the contour of the cavity at any instant is an ellipse with center at the 

origin Y” 
II+: (t)]2 + [l-m @)]a =cZ(t) (&) (2.13) 

Let us consider some of the most interesting particular cases of the general solution. 

1”. Axisymmetric problem. At any time let the equality oz = o: be 
satisfied. Then 

r(t)=m(t)=O, h(I)+[p(t)+e~.“(t)l (2.14) 
The cavity is the circle t 

(2.15) 

z”. Uniaxial tension of an initial circular cavity. Let p(t) = 
o,“(t) = 9, ba = 0, a: (t) = o = con&. Then 

\ 

c5t 
\ 

rst 
m(t)=--1+exp -7q,, c (t) = co exp 4~ 

( ) 
(2.16) 

The cavity contour is contracted in the direction of the z-axis and is broadened in the 

direction of the tension, approaching a slit along the Y-axis as t 3 00. 

3”. Uniaxial tension of an initial slit. Let the relationships 

bo = co, p = x P = 0, 0; (t) = (3 = const 

be satisfied, i.e. let the body be subjected to uniaxial tension along the y-axis by a con- 
stant stress; at the initial instant there is a zero thickness slit of length 4co along the 

t-axis. According to the general formulas (2.11) and (2.13) we obtain 
ot 

m=2exp -- -1, 
( j 2P 

c=coexp ($) (2.17) 

Therefore, the slit is transformed into an ellipse which contracts, with time, in the 
x -direction and broadens in the tension direction, tending to a slit in the g-direction 
as t -P 00 . Let us present the magnitude of the stress at the most stressed point 
z = (1 + m)c, y = 0 at 

by = G cth q (2.18) 

It is interesting that the stress at this point is independent of the applied external load- 
ing o for small relative times (a peculiar “local plasticity”) 

o=J!E 
y t for at 4 4~ (2.19) 

The stress and velocity distribution in the neighborhood of the end of the slit at large 

distances compared to the radius of curvature of the ellipse at the point z = (1 + m)c, 
Y = 0, but small compared with the length 4co of the initial slit, is the same for small 
relative loading times ot -@ 4p , as the distribution of the corresponding stresses and 
displacements in linear elasticity theory. 

The qualitative results obtained apparently are also valid to a certain extent for visco- 
elastic bodies. 

Translated by M. D. F, 


